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The Determination of Structure Factors From Dynamical Effects 
in Electron Diffraction 
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In order to obtain accurate data on structure factors from electron diffraction data, it is necessary to 
take into account the inevitable n-beam dynamical diffraction effects. The comparison of intensity 
values from detailed computer calculations with observed intensities from perfect crystals is reviewed 
for the cases of convergent beam diffraction patterns from MgO crystals of uniform thickness and of 
dark-field images of wedge-shaped crystals of silicon. An analysis of the sources of error in each case 
suggests that it may be possible to derive structure factor values with an accuracy of better than one 
per cent. The method, recently proposed by Watanabe et al. [Acta Cryst. (1968). A 24, 249] for deriving 
structure factors from the values of accelerating voltages for which some Kikuchi lines disappear, is 
reviewed and possible sources of error are examined. 

Introduction 

The derivation of structural information on crystals 
from electron diffraction data differs from that for the 
X-ray case in several important respects. One is that 
the information refers to the potential distribution 
rather than the electron density distribution. This pro- 
duces no significant differences in the positions found 
for the centres of any but the lightest of atoms, but 
may lead to appreciable differences in the details of 
the distributions associated with the ionization, bond- 
ing and thermal motions of atoms. As will be shown 
later, conversion to data in electron density distribu- 
tions is possible and may, within certain limitations, 
be simple. 

Of greater practical importance is the almost univer- 
sal occurrence of dynamical diffraction effects which 
cannot be adequately described in terms of the two- 
beam approximation, usual in X-ray diffraction, when 
any degree of precision is required. The number of 
coherently-interacting simultaneously-diffracted beams 
which must be taken into account to give an accurate 
representation of intensities varies from ten to fifty or 
more, depending on the experimental conditions. 

The case for which a simple kinematical approxima- 
tion is most nearly valid is that of the ring or arc pat- 
terns, given by polycrystalline materials, such as are 
used for structure analysis by the workers in the Soviet 
Union (Vainshtein, 1964). For many samples, correc- 
tions have been made to intensities by means of Black- 
man's (1939) two-beam theory for powder patterns. 
However it has recently been shown (Turner & Cowley, 
in preparation) that, even when tests based on the two- 
beam approximation indicate no appreciable dynamical 
effects, n-beam interactions may provide significant 
modifications of the intensities and so limit the accu- 
racy of a structure analysis. It may be that, when an 
adequate account of n-beam interactions can be incor- 
porated in the interpretations of intensities, it will be 
possible to obtain high accuracy in structure analysis 
based on such data, but this has not yet been achieved. A 

review of the present situation is given by Cowley (1967). 
Dynamical diffraction effects obtained with single- 

crystal specimens were detected and recognized many 
years ago in electron diffraction work. MacGillavry 
(1940) explained details of convergent beam diffraction 
patterns of mica and used them to derive structure 
factors by means of a two-beam approximation. The 
same approximation was used with reasonable success 
by Heidenreich & Sturkey (1945) to explain Pendel- 
1/Ssung fringes observed in electron microscope images 
of wedge-shaped fringes and by Sturkey (1948) to ex- 
plain the fine-structure splitting of diffraction spots 
given by crystals of regular shape. 

However recent observations and calculations have 
indicated that, for each of these types of experiment, 
the two-beam approximation gives results which are 
in error by five to ten per cent in even the most fa- 
vourable circumstances. In order to approach the 
degree of accuracy which is now regarded as significant 
for providing structural information on the relatively 
simple substances so far involved, it is necessary to 
work entirely in terms of n-beam dynamical theory and 
computations. 

The calculation of n-beam intensities 

The introduction of suitable programs for moderate 
to large size computers has now provided the possibility 
of routine calculation of the intensities of diffracted 
beams given by perfect crystals with arbitrary accuracy. 
Calculations for imperfect crystals are necessarily more 
difficult but considerable progress is being made in this 
direction also. Calculations are made using either the 
slice method, developed by Goodman & Moodie (1965) 
on the basis of the slice-formulation due to Cowley & 
Moodie (1957) and reviewed by Cowley (1967), or the 
matrix method (Howie & Whelan, 1961 ; Fisher, 1968). 
The computing times, convenience and accuracy of 
these two methods are comparable for medi urn-size com- 
puters. From the considerable number of calculations 
already made, some general conclusions can be drawn. 
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For the incident beam near to a principal orienta- 
tion, a two-dimensional spot pattern is produced and 
about fifty beams must be considered for even the 
simplest of structures. The variations of diffracted beam 
intensities with crystal thickness and orientation are 
very complicated except for the most symmetrical of 
conditions (Fisher, 1968). 

The simplest cases, involving the smallest numbers 
of beams, are those given for carefully chosen orienta- 
tions of the crystal such that only a single row of dif- 
fraction spots, passing through the origin, is excited 
with appreciable intensity. Such cases involve only the 
'systematic interactions' between the various orders of 
reflexion from a set of lattice planes. When the incident 
beam satisfies the Bragg angle for the strong innermost 
reflexion of such a row for a simple structure with light 
atoms, we have the closest approach to purely 'two- 
beam' conditions. Calculations show that even for 
these conditions the Pendell~Ssung periodicity or 'ex- 
tinction distance' is modified by five to ten per cent 
by the presence of the weaker beams (Hirsch, Howie, 
Nicholson, Pashley & Whelan, 1965; Goodman & 
Lehmpfuhl, 1967). 

If no absorption is included in the calculations, there 
is no convergence towards a two-beam situation with 
increasing crystal thickness. All beam intensities oscil- 
late strongly but the strong and weak beams maintain, 
on the average, the same relative intensities. If absorp- 
tion is introduced there is a very slow concentration of 
energy in the two stronge,~t beams for large thicknesses 
for some crystals, but a divergence from the two-beam 
situation for other crystals (Fisher, in preparation). 

The intensities of the diffracted beams depend not 
only on the crystal thickness and orientation but are 
also very sensitive to the absolute amplitudes and rel- 
ative phases of the structure factors. This leads to the 
possibility of deriving accurate structure factor values 
from observations on crystals for which the crystal per- 
fection can be ensured and the morphology and orien- 
tation can be adequately defined. Since the region of 
crystal needed to provide the diffraction observations 
may have dimensions of about one micron or, often, 
very much less, the requirement of crystal perfection 
is relatively easily met. Developments of both the con- 
vergent beam diffraction technique and the observation 
of thickness fringes may provide adequate control of 
the other experimental variables and have been ex- 
plored as a basis for structure factor determinations. 
Further investigations of the refraction splitting of dif- 
fraction spots have recently revealed interesting effects 
of n-beam interactions (Lehmpfuhl, private communi- 
cation) but the prospect for deriving accurate struc- 
tural data in this way seems more remote. 

Convergent beam diffraction experiments 

The techniques now used for obtaining convergent 
beam diffraction patterns from very small areas (500 
or less in diameter)of parallel-faced, perfect crystals 

have been described by Goodman & Lehmpfuhl (1964) 
and Cockayne, Goodman, Mills & Moodie (1967). The 
method provides a record of the variation of the inten- 
sities of all diffracted beams with the angle of incidence 
of the primary beam, for constant crystal thickness. 
Corresponding calculations are made on the basis of 
assumed values for the Fourier coefficients of the po- 
tential distribution, and these coefficients are varied to 
obtain the best possible fit with the observations. 

The crystal thickness is determined at first roughly 
by observations on the shape-transform detail of inten- 
sity distributions for weak reflexions and then is re- 
fined as a parameter of the calculations. An accuracy 
of better than one per cent is obtainable. Some allow- 
ances must be made for thermal motions of the atoms 
and for absorption effects, but for the former an ele- 
mentary treatment using X-ray Debye-Waller factors 
is usually adequate, and absorption has very little 
effect except on the primary beam. 

A detailed study on MgO has been made by Good- 
man & Lehmpfuhl (1967) using the h00 line of system- 
atic reflexions from perfect flat crystals, of about 500 A 
thickness, tilted to one of the two orientations which 
provide almost complete absence of non-systematic 
interactions. They derived a temperature-corrected 
value for the 200 Fourier coefficient of Vz00 = 7.02 volts. 
This compared well with values derived from the most 
recent calculations of MgO, which give potentials rang- 
ing from 6.90 to 7.27 volts. From the sensitivity of the 
calculated dependence of intensity on angle to changes 
in the assumed values of these structure factors and 
an analysis of possible experimental errors, an accuracy 
of better than one per cent seemed possible. 

A further study of the situation has revealed that, 
even for the orientations carefully chosen to minimize 
the effect of non-systematic interactions, the intensities 
given by their one-dimensional calculations, involving 
systematic h00 interactions only, are not exactly the 
same as those given by the full two-dimensional cal- 
culations for the same orientations. But the inclusion 
of the non-systematic interactions does not change the 
value of the 200 structure factor giving best fit with 
the experimental intensities. However, full two-dimen- 
sional calculations, made for other, less favourable, 
orientations, taking into account all possible non- 
systematic interactions, have shown errors in structure 
factors deduced from the one-dimensional calculations 
amounting to two or three per cent. It is therefore 
important that the additional difficulties and more 
laborious procedures of two-dimensional computation 
should be undertaken, at least to check representative 
cases, when one-dimensional calculations are used for 
the refinement of structure factors. (P.Goodman & 
A. G. McMahon, private communication). 

Thickness fringes in electron micrographs 

The bright field image of a wedge-shaped crystal, ob- 
tained with the primary transmitted beam, and the set 
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of dark-field images obtained using the various dif- 
fracted beams provide an immediate measure of the 
variation of the diffracted intensities with crystal thick- 
ness. Since the available computing methods provide 
intensities as a function of crystal thickness most read- 
ily, a single 'run' on the computer gives the data for 
comparison with an experiment, provided that the 
crystal orientation, electron wavelength and other ex- 
perimental factors are adequately determined. 

Normal dark-field images, obtained by translating 
the objective aperture, suffer from loss of resolution 
and contrast because electrons which lose energy in 
the specimen are displaced in the image by the strong 
off-axis chromatic aberration of the objective lens. It 
is preferable to use the high-resolution dark-field tech- 
nique of tilting the beam incident on the specimen so 
that the diffracted beams are made axial. The principle 
of reciprocity ensures that the diffracted intensities will 
be the same as in aberration-free 'normal' dark field 
images (Pogany & Turner, 1968). 

In order to reduce the requirements for microscope 
resolution, it is convenient to spread the thickness 
fringes by using a relatively small-angle crystal wedge. 
For initial experiments therefore, thin wedges of silicon 
(wedge angle around 30 °), obtained by shattering large 
crystals, were employed instead of the 90 ° wedges of 
MgO traditionally used for thickness-fringe observa- 
tions. 

The orientations of the crystals were obtained with 
sufficient accuracy from Kikuchi-line patterns, which 
could also be used for accurate determinations of elec- 
tron wavelength. 

For a strictly two-beam case, with the Bragg angle 
satisfied, the Pendell~Ssung periodicity depends on the 
single parameter of the structure factor for the one 
reflexion, and a knowledge of the wedge angle is nec- 
essary in order to determine this periodicity from the 
thickness fringes. For n-beam cases, however, the in- 
tensity variations depend not only on the structure 
factors but also on the excitation errors which are 
determined by the incident beam direction and the 
wavelength. Then the structure factors may be derived 
on an absolute basis by comparison with the excitation 
errors, and no knowledge of the wedge angle or of the 
electron microscope magnification is necessary. 

Experience has shown that silicon wedges formed by 
fracture usually have accurately flat faces, so that there 
is a linear relationship between distance from the crystal 
edge and crystal thickness and no detailed calibration 
of crystal thickness is necessary. 

Pollard & Turner (in preparation) have proposed a 
'turning-point analysis' for the initial stages of refine- 
ment of structure factors. In this the positions of 
maxima and minima of the experimental and calculated 
intensity curves are compared for various diffracted 
beams and various incident beam orientations. There- 
by, uncertainties in intensities created by difficulties in 
subtracting background from the experimental curve 
are avoided. But, for greatest accuracy, the detailed 

variations of intensity with thickness must presumably 
be used and for this purpose the subtraction of in- 
elastically scattered electrons by energy analysis will 
be valuable. 

Pollard has made detailed calculations on the effect 
of variation of the 111 and 222 structure factors for 
silicon in an attempt to confirm or refine the conclu- 
sions regarding the distribution of bonding electrons 
obtained from X-ray diffraction data by Dawson 
(1967). 

In Fig. 1, the observed intensity variation is compared 
with curves calculated for several different assumed 
values of the structure factors for the case of the 222 
reflexion with the incident beam at the Bragg angle 
for the 111 [Fig. l(a)] and 222 [Fig. l(b)] reftexions. The 
best agreement with experiment was found for values 
offa,  the part of the structure factor due to one atom 
(Dawson, 1967), of about f A ( l l l ) = 3 . 1 0 A  and 
fA(222)=0.002A; considerably different from the 
values fA(111)= 2.83 and fA(222)=0"047 which corre- 
spond to Dawson's deductions from X-ray results and 
also from the values fA(111)=3-248 and fA(222)=0, 
obtained using the relativistic Hartree-Fock potentials 
for isolated neutral atoms (Doyle & Turner, 1968). 

However, as in the case of the convergent beam ex- 
periments on MgO, these initial results are based on 
one-dimensional calculations of systematic interactions 
only, and it is possible that the full two-dimensional 
calculations now in progress may give more accurate 
results differing from these by one or two per cent of 
the fA(111) value. 

The fitting of calculated to experimental intensity 
curves for both the wedge method and the convergent 
beam diffraction method depends at the moment on 
a trial-and-error procedure. Although the calculations 
can be made quite rapidly with available computers, 
this is still rather cumbersome, and a systematic refine- 
ment procedure would be of considerable value. 

The disappearance of Kikuchi lines 

Recently an entirely new basis has been proposed for 
the derivation of accurate structure factor values. This 
derives from the observation (Uyeda, 1968) that par- 
ticular members of the set of parallel Kikuchi lines, 
due to the various orders of reflexion from one set of 
planes, appear to vanish for particular values of the 
electron accelerating voltage in the high-energy, rela- 
tivistic, region (greater than about 200 keV). Watanabe, 
Uyeda & Kogiso (1968) have interpreted such extinc- 
tions in terms of zero values for the effective structure 
factor values, U~,, derived from Bethe's second approx- 
imation (Bethe, 1928), the so-called 'Bethe potentials'. 

When the excitation error, ~h, is zero, as at the 
Kikuchi line position for the h reflexion, these may be 
written (Uyeda, 1968): 

[ S(hl)S(h=hl)] 
U'(h) = R U ( h ) -  Rd  2 Xhl ha(h-ha)  ] , (1) 
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where U(h) = (2me/h z) V(h), d is the interplanar spacing 
for the first order reflexion and R is the relativistic 
factor given by R=(1 +eE/mcZ). The values of R re- 
quired to make U'(h) equal to zero for some second- 
order reflexions from simple metallic structures cor- 
respond to voltages, E, in the range 300 to 400 keV 
and agree well with the voltages for which the corre- 
sponding Kikuchi line extinctions are observed. 

If the right hand side of equation (1) is put equal 
to zero, we have a relationship between structure fac- 
tors. Then, for example, the first-order structure factor, 
UI, may be determined in terms of the structure factors 
for higher orders which are more accurately known 
because their dependence on the configuration of the 
outer bonding electrons is much smaller. 

In this way Watanabe, Uyeda & Fukuhara (1968) 
have derived electron structure factors and hence 
values for X-ray atomic scattering factors, for the 110 
reflexion of Fe and the 111 reflexion of Ni and A1, 
which are in good agreement with other available 
results. The relevant experimental parameters are deter- 

mined with good accuracy, leading to errors of less 
than one per cent. The validity of the Bethe second 
approximation was tested by n-beam calculations, made 
using the matrix method of Fukuhara (1966). The ac- 
curacy with which equation (1) gives the correct zeros 
was found to be very good, so that the resulting errors 
in the derived U(h) values amount to less than 0.1%. 

A partial explanation for this rather surprising indi- 
cation of accuracy for the Bethe approximation is pro- 
vided by considerations of the n-beam theory appro- 
priate to Kikuchi lines. For thick crystals the electrons 
forming the Kikuchi lines have undergone, on the 
average, a large number of elastic and inelastic scat- 
tering processes, so that the Kikuchi line intensity may 
be considered as given by the incoherent addition of 
electron beams originating from various depths in the 
crystal. Thus, to a good approximation, 

I(h) = I Tl(h)-t- T2(h) + T3(h) - b . . .  12dH, (2) 
0 

where H is the crystal thickness and T1, T2. . .  etc. 

Silicon 222 reflexion 

(111 ) at Bragg angle 

Crystal thickness 

Calculated: fA(111) =3"10 

/~ fA(111 ) = 2"83 I Dawson 
= ~  valves. 

i n  ^ f~ /~ ^ fA(111)=3"248 
/If/////All } 

0 800 A 3200 A 
(a) 

//• Silicon 222 reflexion 

Y L (222) al Bragg .angle" 

Crystal thickness 

spherical atom 
R.H.F. potentials 

Calculated: fA(111) =3"10 
/ ~  fA(222) =0"0015 

/ - ~  fA= 2"83 for (111 ) Dawson 
valves. 

fA(111) =3"248 ], spherical atom 
fA(222) =0 J R.H.F. potentials. 

800 A 3200 A 
(b) 

Fig. 1. (a) Comparison of observed and calculated intensity of the 222 reflexion from silicon with the Bragg condition 
satisfied for the 111 reflexion. The experimental curve was obtained by microdensitometer measurement of the dark field 
electron microscope image. (b) As for (a), but with the 222 Bragg condition satisfied. 
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represent the contributions of beams scattered once, 
twice and so on, i.e. the terms of the Born series de- 
velopment for n-beam diffraction in a crystal. Making 
use of the expressions for Tn derived by Cowley & 
Moodie (1957) it can be shown (Cowley, in prepara- 
tion) that, for (~--0, equation (2) gives 

"R27~2~'2 I U(hl) U ( h  - hi) 
I(h)= --4p-3o --- , U ( h ) - R d 2  Xhl h l ( h - h l )  + REd4 

U ( h l ) U ( h 2 )  U ( h -  h I - h2) [2 
x Xh I 27h 2 h i ( h - h 1 )  (hi+h2) ( h - h i - h E )  . . . .  J (3) 

The first two terms of the series included here are 
identical with (1). It does not follow, however, that 
if the sum of the first two terms is zero, the sum of the 
whole series will be zero. In fact alternate terms in the 
series will be equal and opposite in sign if 

U(h - hn-1) = R d  2 Z'hn U(hn -- hn-a) U(h - hn) 
h n ( h - h n )  ........ , (4) 

for all hn-1 values. Then the special case hn-1 = 0 gives 
the zero for the sum of the first two terms. It seems 
unlikely that the general condition (4) can be realized, 
except for some sort of averaging over the hn-1 values 
which may possibly depend on a favourable relation- 
ship between the U(hn). Thus the generality of agree- 
ment between the Bethe potential zeros and those cal- 
culated by n-beam methods needs to be justified in 
detail by further investigations. 

Another aspect of the method which requires further 
study is the possibility that errors are introduced by 
limiting the calculation of both the Bethe potentials 
and the n-beam matrix results to the systematic inter- 
actions of a one-dimensional set of reflexions. The sit- 
uation is not so clearly defined as for the convergent 
beam or wedge crystal methods since the disappearance 
of a Kikuchi line is presumably judged by observing 
its whole length, corresponding to a variety of orien- 
tations of the diffracted beams with respect to the 
crystal. 

Conclusions 

It is apparent from the above that the methods for the 
derivation of accurate structure factor values from 
dynamical effects in electron diffraction are in a rela- 
tively early stage of development. The sources of error 
and considerations of accuracy are, for the most part, 
entirely different from those met in X-ray diffraction 
methods, but the present understanding of n-beam dif- 
fraction effects is sufficient to justify claims that present 
results are certainly accurate to within a few per cent. 
Tests and refinements of the methods, now in hand, 
should ensure an error of less than one per cent. One 
remaining factor of uncertainty in the interpretation 
of the results comes from the fact that absorption 
effects add a small real part as well as an imaginary 
part, to the effective potentials. This probably does not 
effect the present results seriously, but should be eval- 
uated in detail in the future. 

A further possible method for obtaining accurate 
data on structure factors, as yet untested, arises from 
the possibility that, after integration over crystal thick- 
ness, zeros of intensity may be obtained for some re- 
flexions when the angle of incidence of the primary 
beam, rather than the accelerating voltage is varied. 
For this case the Bethe potential approximation is not 
valid, and no zeros are given by integrations such as 
equation (2). However it has been shown (Cowley, in 
preparation) that some zero or minimum values of in- 
tensity may be given by a coherent integration of am- 
plitudes over thickness, such as would be appropriate 
for diffraction from wedge-shaped crystals with well- 
collimated electron beams. 

The primary data obtained from the electron dif- 
fraction experiments are values for the Fourier coef- 
ficients of the potential distribution. The relation to 
X-ray diffraction structure.factors is provided by Pois- 
son's equation. If the potential distribution can be 
separated into additive contributions from individual 
atoms, X-ray scattering factors may be derived from 
the Mott formula 

fel-- re°e2 ( Z - f x )  
2h 2 82 ' 

where s = ( sin 0)/,l. 
However, it should be pointed out that the potential 

distribution depends on both the electron distribution 
and the positions of the atomic nuclei, and so contains 
in principle, some information in addition to that 
derivable from X-ray data. Any differences in position 
or thermal vibration of the nuclei and the electron 
clouds will be reflected in the electron diffraction data. 
Observable effects of this type may be present, even 
at the present levels of accuracy, in the case of hydrogen 
or other light atoms. Hence, conversion to the equi- 
valent X-ray scattering factors should not be auto- 
matic. Data on potential distributions should be pre- 
served as such for future reference if not for immediate 
interpretation. 
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An Accurate Absolute Scattering Factor for Silicon 

D2"4 

BY M. HART AND A.D. MILNE 

H. H. Wills Physics Laboratory, University of Bristol, Bristol, England 

The 220 Bragg reflexion of silicon has been studied in considerable detail. By the Pendell6sung fringe 
method we have measured the atomic scattering factor with an internal consistency of better than 0.1%. 
Particular care was taken to exclude systematic errors which might arise from elastic strain, X-ray 
absorption and X-ray polarization effects. The crystal was cut parallel to the Bragg planes at the points 
of observation so that its thickness could be directly measured with a travelling microscope. At the value 
of sin 0/2 corresponding to the 220 Bragg reflexion, the experimental atomic scattering factors (at 20°C) 
were:f=8-478+0.008 for Mo K~t radiation; f=8.448+0.012 for Ag K~I radiation, and f (Mo Kcq)/ 
f (Ag K~I) = 1.0035 + 0-0007. 

Introduction 

Several authors have recently made measurements of 
X-ray structure factors by the Pendell/Ssung method 
(Kato & Lang, 1959; Hattori, Kuriyama, Katagawa & 
Kato, 1965; Hart, 1966; Hattori & Kato, 1966; Kato 
& Tanemura, 1967; Yamamoto & Kato, 1968; Batter- 
man & Patel, 1968). However, none of those authors 
were able to obtain absolute values of structure factors 
to better than 1%, even on favourable materials such 
as silicon. In the present measurements on the 220 
Bragg reflexion from silicon, we have obtained values 
of structure factors with deviations of less than 0.1% 
between separate experiments. Since this is the highest 
precision ever claimed for a structure factor measure- 
ment, we will describe the experimental technique in 
some detail. 

Such precision of course finds immediate applica- 
tions in studies of the electron distribution in crystals, 
in discussions of the relative merits of the various the- 
oretical models by which atomic scattering factors are 
calculated and in the evaluation of possible sources of 
systematic error in the more conventional techniques 
by which structure factors are measured. In this con- 

text it may be important to notice that the Pendel- 
16sung method involves only the coherent part of the 
X-ray scattering amplitude. 

Theory 

The spherical wave theory of diffraction by highly per- 
fect crystals has been thoroughly developed in a series 
of papers by Kato (1960, 1961a, b, 1968a, b). In addi- 
tion, the influence on Pendell/Ssung fringes of crystal 
imperfections, including elastic strains, has been in- 
vestigated both theoretically (Kato, 1964) and experi- 
mentally (Hart, 1966) in considerable detail. 

In the symmetric Laue case, with which we are ex- 
clusively concerned, the intensity field Ih of the Bragg 
reflected waves in the spherical wave case of a section 
pattern (Kato & Lang, 1959) is 

Ih=ArcZAg 2 cosec20{Jo(rc~oAgl)} 2 , (1) 

where A is a constant and 0 is the Bragg angle. J0 is 
the zero order Bessel function and 0 is the depth in 
the crystal measured along the net plane from the 
X-ray entrance surface (we are concerned only with 


